柔性超级电容器组成

超级电容器结构材料要求

超级电容器的材料研究从椰子壳、杏仁壳、麦子等多种材料,转到与石墨烯和碳纳米管复合材料相匹配的固体离子凝胶等。这将使超级电容器的寿命超过目前锂离子电池的三倍,甚至更多。兰博基尼(Lamborghini)、吉利(Geely)、麻省理工学院(MIT)、伦敦帝国理工学院(Imperial College London)以及日本某电子巨头,优化、整合这类新材料打造的超级电容器智能车身电动汽车,其储能装置将不再需要考虑重量和空间。通过添加无毒的柔性可拉伸的医用植入物和贴片,利用超级电容器原料可切割成所需要的各种形状。

增加能量密度需要最大化有用的电极面积。这方面,新的选择是分级型(hierarchical)或外嵌型(exohedral)电极。分级结构含有不同尺寸的孔(从微孔到大孔),很多孔结构相互连接并以分级的形式组装起来。这些电极材料目前是由椰子、瓜皮、木材、松针或鱼鳞热解制成,以实现成本效益方面的权衡。

image.png

外嵌型是指具有大比表面材料的微观阵列,特别是碳同素异形体(如石墨烯和碳纳米管),以及最近研究的其它二维材料(如MOF)。对于这两种类型,严谨合成可能在生产中过于昂贵。碳化物中的碳也可能产生混合物和杂质。

以上就是关于超级电容结构原理,超级电容器结构材料要求的知识介绍,超级电容器可以实现可拉伸的结构形式,而这是电池很难做到的。与蓄电池和传统物理电容器相比,超级电容器的优点有:功率密度高、循环寿命长、工作温限宽、免维护以及绿色环保。全新的材料和结构形式带来的改变,将吸引了更多的科研人员和全球巨头的投入超级电容量的研发。相信不久的将来,超级电容器将能拥有与电池媲美的能力!